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The phenomenon of thermomolecular pressure difference is described in terms of the solution
to the linearized Bubnov—Galerkin—Knudsen model, assuming an arbitrary tangential-moment-
um accomodation coefficient for molecules impinging on a surface. A comparison of theore-
tical results with test data shows a close agreement between them.

An analysis of available test data indicates that the phenomenon of thermomolecular pressure differ-
ence depends on the tangential-momentum accommeodation coefficient for gas molecules impinging on a sur-
face [1-3]. Therefore, a comparative evaluation of theoretical results and test data over the entire range
of Knudsen number values must correctly account for the accomodating capability of the channel surface
with respect to various gases. '

Let the gas in a circular capillary be perturbed by a temperature gradient in the z-direction. Under
steady conditions there will appear a corresponding pressure gradient which reduces to zero the mass
flow rate of gas through any section of the capillary. We assume that, inasmuch as the perturbation is
small, the velocity distribution of molecules approaches a Maxwellian one:

f(C, Cz7 r’ Z) zfo [1+C2(P(C, r)]s

with r denoting the two-dimensional radius vector in a plane normal to the z-axis and ¢, ¢z denoting res-
pectively the dimensionless r- and z- component of the molecular velocity.

A linearization of this problem makes it feasible to analyze the effects due to the pressure gradient and
those due to the temperature gradient independently [4-8]:
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From Egs. (2) and (3) one can easily determine the distribution function of molecules at any point with
the coordinate s which coincides with some initially selected direction of velocity ¢ (Fig. 1):
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where ¢p(0, c) and cpT(O, c) define the corresponding distribution functions of molecules emitted from point
M on the capillary surface in the direction of c.

The boundary conditions and the conditions of symmetry for this problem are
0:(0, 9 = (1 —#) 9, 0, —0), (6)
0,0, —g =9, 0 (=P T) )

Here € is the tangential-momentum accommodation coefficient for moleculesimpinging on the surface, and
1= 2(1-——1'zsinzoz)1/2 is the length of chord MN.

From Eq. (4), with (6) and (7) taken into account, we obtain
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It can be shown that ¢ (0, ¢) = 0 for any value of parameter 6. The proof will be omitted here, be-
cause of rather unwieldy though not very complex calculations. An analogous result has been obtained in
'[9], where the velocity of sliding due to heat is shown to be independent of the tangential-momentum accom-
modation coefficient.

The definition of macroscopic velocities up and up representing all possible directions ¢ and surface
points M, with the aid of expressions (4), (5), and (8), yields the following linear nonhomogeneous integral
equations:
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Integration in (9) and (10) is performed with respect to the cross section area of the capillary Z.

One may apply the Bubnov—Galerkin process [10] to Egs. (9) and (10), for the purpose of which Ip
and § are approximated by series in even basis functions {r?

W) = T E 0 = X B O™, (11)

k=0 k=0
while coefficients Ay and By are determined from the stipulation that Eqs. (9) and (10) be orthogonal to the
respective basis functions. The fast convergence of this method makes it feasible to consider two terms
of expansions (11) only.

The referred rates of gas flow due to the pressure gradient Qp and due to the temperature gradient
QT are determined according to the respective formulas
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Fig. 1. Geometrical
diagram for Eqs. {4)
and (5).
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where the symbols inside () brackets denote mean-over-the section macroscopic velocities of the gas.
Formulas for calculating the coefficients a and b are derived in the Appendix.

As has been noted earlier, no macroscopic flow through a capillary occurs under steady conditions:
<UT>+‘(MP>=O, (14)
and, therefore,
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When the perturbation of a gas from its steady state is small (A T/T < 1), then the tangential-moment-
um accommodation coefficient € maybe assumed constant along the capillary and to correspond to the mean
surface temperature. Integration of (15) along the capillary will then yield a formula for the thermomolec-
ular pressure difference:

(16)

In the limiting case of a free-molecular mode (6 = 0}, relation (16) yields the Knudsen equation with
a correction accounting for the imperfect tangential-momentum accommodation of gas moleculesat a surface:
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The theoretical results are shown in Fig. 2 together with test data obtained with long glass capil-
laries at temperatures Ty = 7T7°K and Ty = 299°K [3]. According to the diagram, the theoretical curves for
g=1(1), €= 0.96 (2), and € = 0.92 (3) do accurately enough describe the test data for argon, hydrogen, and
neon respectively (the maximum discrepancy does not exceed 2%).

Thus, the satisfactory agreement between theoretical and experimental values lends support to this
theory as a basis for calculating the corrections to gas pressure measurements made with instruments at
temperatures other than the test temperature, also for determining the tangential-momentum accommodation
coefficient for molecules of various gases impinging on a surface.

APPENDIX
The coefficients in Eqs. (12) and (13) are determined with the aid of the following formulas:
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Fig. 2. Exponent v as a function
of the dimensionless collision
parameter 0 and of the tangen-
momentum accommodation coef-
ficient € = 1.0 (1), 0.96 (2), 0.92

4 o —y | (3) (theoretical curves), test points
x — | for neon (I), hydrogen (II}, argon
‘ & — (I11).
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For evaluating the integrals
1
In®) = j o" (1 — o®)2J_, (260) dv
0

one can use asymptotic expansions of functions Jym(x) [11]. It is important to know the first four integrals
K, I, £, and 1, the other integrals can be calculated according to the recurrence formula

2% (8) = (m — 1) Iy (8)+2817% (9).

NOTATION

ci is the i-th component of dimensionless velocity;
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is the macroscopic velocity due to pressure gradient;

is the macroscopic velocity due to temperature gradient;
is the dimensionless collision parameter;

is the pressure;

is the temperature;

is the radius of capillary tube;

is the tangential-momentum accomodation coefficient;
is the cross section area of capillary tube;

is the exponent of thermomolecular pressure difference;
is the referred flow rate due to pressure gradient;

is the referred flow rate due to temperature gradient.
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